Tracking characteristics of an OBE parameter-estimation algorithm

نویسندگان

  • Ashok K. Rao
  • Yih-Fang Huang
چکیده

Abstmct-Recently there seems to have been a resurgence of interest in recursive parameter-bounding algorithms. These algorithms are applicable when the noise is bounded and the bound is known to the user. One of the advantages of such algorithms is that 100% confidence regions (which are optimal in some sense) for the parameter estimates can be obtained at every time instant, rather than asymptotically as in the case of the least squares type algorithms. Another advantage is that these recursive algorithms have the inherent capability of implementing discerning updates, particularly that of allowing no updates of parameter estimates in the recursion. This paper investigates tracking properties of one such algorithm, referred to as the Dasgupta-Huang optimal bounding ellipsoid (DHOBE) algorithm. Conditions that ensure the existence of these 100% confidence regions in the face of small-model parameter variations are derived. For larger parameter variations, it is shown that the existence of the 100% confidence regions is guaranteed asymptotically. A modification is also proposed here to enable the algorithm to track large variations in model parameters. Simulation results show that in general, the modified algorithm has tracking performance comparable, and in some cases superior, to the exponentially weighted recursive least squares algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Target Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks

Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...

متن کامل

Automatic Bounding Estimation in Modified Nlms Algorithm

Modified Normalized Least Mean Square (MNLMS) algorithm, which is a sign form of NLMS based on set-membership (SM) theory in the class of optimal bounding ellipsoid (OBE) algorithms, requires a priori knowledge of error bounds that is unknown in most applications. In a special but popular case of measurement noise, a simple algorithm has been proposed. With some simulation examples the performa...

متن کامل

Modified quasi-OBE algorithm with improved numerical properties

The quasi-OBE (QOBE) algorithm is a set-membership adaptive filtering algorithm based on the principles of optimal bounding ellipsoid (OBE) processing. This algorithm can provide enhanced convergence and tracking performance as well as reduced average computational complexity in comparison with the more traditional adaptive filtering algorithms such as the recursive leastsquares (RLS) algorithm...

متن کامل

Novel blind variants of the OBE algorithm

Set-membership algorithms, including the conventional optimal bounding ellipsoid (OBE) algorithm, require a priori knowledge of exact error bounds which is unknown in most applications. Conservative (over-estimated) error bounds used in practice lead to inconsistent parameter estimation. The novel OBE algorithm with automatic bound estimation (OBE-ABE) is shown to be consistently convergent wit...

متن کامل

Multiweight optimization in OBE algorithms for improved tracking and adaptive identification

Optimal Bounding Ellipsoid (OBE) algorithms offer an attractive alternative to traditional least squares methods for identifying linear-in-parameters signal and system models due to their low computational efficiency, superior tracking ability, and selective updating that permits processor sharing among tasks. These benefits are further enhanced by multiweight optimization (MWO) which yields im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 41  شماره 

صفحات  -

تاریخ انتشار 1993